Julius wilhelm richard dedekind biography of william

  • Julius Wilhelm Richard Dedekind (/ˈdeɪdɪkɪnd/; German:
  • Julius Wilhelm Richard Dedekind (October
  • Richard was the youngest of four
  • Richard Dedekind

    German mathematician (1831–1916)

    "Dedekind" redirects here. For other uses, see Dedekind (surname).

    Julius Wilhelm Richard Dedekind (;German:[ˈdeːdəˌkɪnt]; 6 October 1831 – 12 February 1916) was a German mathematician who made important contributions to number theory, abstract algebra (particularly ring theory), and the axiomatic foundations of arithmetic. His best known contribution is the definition of real numbers through the notion of Dedekind cut. He is also considered a pioneer in the development of modern set theory and of the philosophy of mathematics known as logicism.

    Life

    Dedekind's father was Julius Levin Ulrich Dedekind, an administrator of Collegium Carolinum in Braunschweig. His mother was Caroline Henriette Dedekind (née Emperius), the daughter of a professor at the Collegium. Richard Dedekind had three older siblings. As an adult, he never used the names Julius Wilhelm. He was born in Braunschweig (often called "Brunswick" in English), which is where he lived most of his life and died. His body rests at Braunschweig Main Cemetery.

    He first attended the Collegium Carolinum in 1848 before transferring to the University of Göttingen in 1850. There, Dedekind was taught number theory by professor Moritz Stern. Gauss was still teaching, although mostly at an elementary level, and Dedekind became his last student. Dedekind received his doctorate in 1852, for a thesis titled Über die Theorie der Eulerschen Integrale ("On the Theory of Eulerian integrals"). This thesis did not display the talent evident in Dedekind's subsequent publications.

    At that time, the University of Berlin, not Göttingen, was the main facility for mathematical research in Germany. Thus Dedekind went to Berlin for two years of study, where he and Bernhard Riemann were contemporaries; they were both awarded the habilitation in 1854. Dedekind returned to Göttingen to teach as a Privatdozent, giving courses on pro

    Dedekind’s Contributions to the Foundations of Mathematics

    1. Biographical Information

    Richard Dedekind was born in Brunswick (Braunschweig), a city in northern Germany, in 1831. Much of his education took place in Brunswick as well, where he first attended school and then, for two years, the local technical university. In 1850, he transferred to the University of Göttingen, a main center for scientific research in Europe. Carl Friedrich Gauss, one of the greatest mathematicians of all time, taught in Göttingen, and Dedekind became his last doctoral student. He wrote a dissertation under Gauss, finished in 1852. As was customary, he also wrote a second dissertation (Habilitation), completed in 1854, shortly after that of his colleague and friend Bernhard Riemann. Dedekind stayed in Göttingen for four more years, as an unsalaried lecturer (Privatdozent). During that time he was strongly influenced by P.G.L. Dirichlet, Gauss’s successor in Göttingen, and by Riemann, then a rising star. (Dedekind did important editorial work for Gauss, Dirichlet, and Riemann.) In 1858, he moved to the Polytechnic in Zürich (later ETH Zürich), Switzerland, to take up his first salaried position. He returned to Brunswick in 1862, where he became professor at the local university and taught until his retirement in 1896. He published most of his major works in this later period. He also had interactions with important mathematicians elsewhere; thus he was in correspondence with Georg Cantor, collaborated with Heinrich Weber, and developed an intellectual rivalry with Leopold Kronecker. He stayed in his hometown until the end of his life, in 1916. (Cf. Landau 1917, ch. 1 of Dugac 1976, Scharlau 1981, Mehrten 1982, ch. 1 of Ferreirós 1999, Harborth et al. 2007, Sonar 2017, for biographical information.)

    Dedekind’s main foundational writings are: Stetigkeit und irrationale Zahlen (1872) and Was sind und was sollen die Zah

  • 1. Biographical Information. Richard Dedekind was
  • Julius Wilhelm Richard Dedekind (October 6, 1831 – February 12, 1916) was one of the major German mathematicians in the late nineteenth century who did important work in abstract algebra, algebraic number theory, and laid the foundations for the concept of the real numbers. He was one of the few mathematicians who understood the importance of set theory developed by Georg Cantor.

    Dedekind argued that the numbers system can be independently developed from geometrical notations and that they are grounded in and derived from a certain inherent creative capacity of the mind, which were some of those issues debated by Bolzano, Cantor, Frege, and Hilbert.

    Life

    Dedekind was the youngest of four children of Julius Levin Ulrich Dedekind. He was born, lived most of his life, and died in Braunschweig (often called "Brunswick" in English).

    In 1848, he entered the Collegium Carolinum in Braunschweig, where his father was an administrator, obtaining a solid grounding in mathematics. In 1850, he entered the University of Göttingen. Dedekind studied number theory under Moritz Stern. Gauss was still teaching there, although mostly at an elementary level, and Dedekind became his last student. Dedekind received his doctorate in 1852, for a thesis titled Über die Theorie der Eulerschen Integrale ("On the Theory of Eulerian integrals"). This thesis did not reveal the talent evident on almost every page Dedekind later wrote.

    At that time, the University of Berlin, not Göttingen, was the leading center for mathematical research in Germany. Thus Dedekind went to Berlin for two years of study, where he and Riemann were contemporaries; they were both awarded the habilitation in 1854. Dedekind returned to Göttingen to teach as a Privatdozent, giving courses on probability and geometry. He studied for a while with Dirichlet, and they became close friends. Because of lingering weaknesses in his mathematical knowledge, he studied elliptic and abelian functions

    .